

FUSED AMINOTETRALINS: NOVEL ANTAGONISTS WITH HIGH SELECTIVITY FOR THE DOPAMINE D₃ RECEPTOR

Kim Y. Avenell, Izzy Boyfield, Martyn C. Coldwell, Michael S. Hadley, Maureen A. M. Healy, Philip M. Jeffrey, Christopher N. Johnson, David J. Nash, Graham J. Riley, Emma E. Scott, Stephen A. Smith,* Rachel Stacey, Geoffrey Stemp and Kevin M. Thewlis.

SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK.

Received 30 June 1998; accepted 3 September 1998

Abstract: Starting from a series of 2-aminotetralins 1, a novel series of N-[4-(4-phenylbenzoylamino)butyl]-octahydrobenzoquinolines and hexahydrobenzoindoles with high potency and selectivity for the dopamine D_3 receptor has been designed. The effect of ligand chirality on binding affinity has been established. Selected derivatives (e.g. 20, 2p) show high functional selectivity and enhanced *in vivo* properties compared to 1.@1998 Elsevier Science Ltd. All rights reserved.

The current treatment of schizophrenia relies heavily on drugs which block up-regulation of the dopaminergic system (in particular via blockade of D_2 -like receptors). Advances in the molecular biology of dopamine receptors have shown that D_2 -like receptors may be divided into D_2 , D_3 and D_4 subtypes. The localisation of these receptor subtypes supports the hypothesis that the extra-pyramidal side-effects associated with currently available drugs result from blockade of the dopamine D_2 receptor subtype and that selective dopamine D_3 receptor antagonists would offer the potential for antipsychotic therapy free of such side-effects.

In a recent report,⁵ we described the discovery and initial evaluation of a series of 2-aminotetralins 1 (R^2 =H) as selective dopamine D_3 receptor ligands. In that report, we showed that for optimal potency and selectivity, the N-substituent R^3 should be an n-propyl group. However, further evaluation indicated that these aminotetralins were metabolised *via* N-depropylation and rapidly cleared. Based on these results, we speculated that affinity for the dopamine D_3 receptor might be maintained and metabolic stability improved if, formally, the propyl group was fused to the tetralin nucleus as in 2. This communication describes some of our studies to investigate the effect of such conformational constraint on dopamine D_3 affinity and selectivity and on metabolic stability.

E-mail Stephen_1_Smith @ sbphrd.com Fax (01279)627841

We initially turned our attention to the synthesis of octahydrobenzoquinolines 2 (n=2). The unsubstituted trans and cis analogues 2a and 2b were prepared from the previously reported trans and cis amines 3.^{6,7} 7- and 8-Substituted racemic octahydroisoquinolines (2c, 2d, 2p and 2q) were prepared by a similar route. Methanesulfonyloxy derivatives were prepared from the related methoxy derivatives by treatment with boron tribromide followed by reaction with methanesulfonyl chloride in the presence of triethylamine.

The enantiomers of *trans* derivative **2c** were prepared *via* the opening of aziridine **5** (prepared in enantiomerically enriched form from the corresponding dihydronaphthalene)^{8a} with allyl magnesium bromide (Scheme 1). Subsequent transformations gave the required single enantiomers **2** (n=2).⁹

Scheme 1

Reagents: (i) CH₂=CHCH₂MgBr, Et₂O; (ii) BH₃.THF then NaOH, H₂O₂; (iii) CH₂(CO₂Et)₂, NaOEt, EtOH; (iv) (a) KOH, EtOH/H₂O then HCl, (b) Reflux in xylene, (c) LiAlH₄, THF; (v) (a) MsCl, Et₃N, (b) K₂CO₃, MeOH, (c) LiAlH₄, THF; (vi) NaBH(OAc)₃, ClCH₂CH₂Cl.

In the corresponding hexahydrobenzoindole series 2 (n=1), the benzyl derivative 4 was prepared using a reported method¹⁰ and elaborated to the racemic *cis* isomer 2l. The related racemic *trans* isomers 2k, 2m-2o, 2r and 2s were prepared (Scheme 1) *via* malonate opening of aziridine 5 (prepared in racemic form).^{8b}

Compounds 2a to 2s were evaluated using displacement of 125 I-iodosulpride from human D_3 and D_2 receptors, expressed in CHO cells, and results are shown in Table 1. The dopamine D_3 receptor has been shown to be weakly coupled to adenylate cyclase in CHO cells. The functional activity of selected compounds at both the D_3 and D_2 receptor was therefore determined *in vitro* using microphysiometry. The functional activity of selected compounds at both the D_3 and D_2 receptor was therefore determined *in vitro* using microphysiometry.

From the initial results (Table 1), we were encouraged that the unsubstituted racemic *trans* derivative 2a maintained good affinity for, and was a functional antagonist at, the D_3 receptor. Furthermore, a level of stereochemical recogition was apparent as the related racemic *cis* isomer 2b proved a much less potent ligand at this receptor. A similar trend was observed with the corresponding racemic methanesulfonyloxy derivatives 2c and 2d. (The introduction of the methanesulfonyloxy group shows particularly beneficial effects on lipophilicity). The level of stereochemical recognition proved even greater within the enantiomerically pure *trans* series (compounds 2e - 2j) with virtually all recognition for the D_3 receptor residing within the (S,S) enantiomers 2e - 2g. This result is in stark contrast with that of the corresponding aminotetralins 1 in which there is little preference for either enantiomer at the D_3 receptor 14 and is clearly a consequence of increased rigidity of the tricyclic system. Some equivalence with the aminotetralin series was seen however, with the hydroxy derivative 2f proving of higher affinity but of lower selectivity than methansufonyloxy analogue 2g.

Broadly similar results were found in the hexahydrobenzoindole system (2, n=1) with *trans* stereochemistry around the ring junction preferred over *cis* (cf. **2k** vs. **2l**). The methanesulfonyloxy derivative **2o** is particularly worthy of note for potency at the D_3 receptor and selectivity over the D_2 receptor both in binding and functional studies.

Within the aminotetralin series 1, there is only a small preference for 5-substitution over 6-substitution. ¹⁴ In our constrained tricyclic series 2, however, there is a clear preference for the equivalent of the former (cf. 2c vs. 2q and 2o vs. 2s) with both ring systems (n = 1 or 2). The effects of constraint on the hydroxy derivative 2p are even more pronounced - in contrast with results from the aminotetralin work, ⁵ compound 2p is an antagonist at the D_3 receptor. Indeed, 2p shows over 100 fold selectivity for the dopamine D_3 receptor over the D_2 receptor in functional experiments. A likely explanation of this change in functional activity is that the hydroxyl group in compound 2p can no longer interact with one of the key serine residues on trans-membrane helix 5 implicated ¹⁵ in receptor activation.

Table 1. Affinities of Tricyclic derivatives at Dopamine D_3 and D_2 receptors

$$\mathbb{R}^2 \xrightarrow{\mathbb{R}^1} \mathbb{R}^1$$

Compound	R ¹	R ²	n	Stereochem at * *	$\mathbf{D_3}^b$	$\mathbf{D_2}^b$	Selectivity	D ₃
				at * *				Function ^{c,} _d
2a	Н	Н	2	(±) trans	7.8	6.3	38	Antagonist
2b	Н	H	2	(±) cis	6.6	6.1	3	
2c	MsO	Н	2	(±) trans	8.0	6.5	30	Antagonist
2d	MsO	Н	2	(±) cis	6.6	6.4	2	
2e	MeO	Н	2	(S,S) trans	8.1	6.3	65	
2f	НО	Н	2	(S,S) trans	9.0	7.6	22	
2g	MsO	Н	2	(S,S) trans	8.2	6.6	45	
2h	MeO	H	2	(R,R) trans	6.1	6.1	1	
2i	НО	Н	2	(R,R) trans	6.2	6.2	1	
2j	MsO	Н	2	(R,R) trans	5.9	5.9	1	
2k	Н	Н	1	(±) trans	7.8	6.3	33	
21	Н	Н	1	(±) cis	7.3	6.3	12	
2m	MeO	H	1	(±) trans	7.8	6.2	40	
2n	НО	Н	1	(±) trans	8.7	7.2	26	
20	MsO	Н	1	(±) trans	8.3	6.5	65	Antagonist
2p	Н	НО	2	(±) trans	8.1	6.3	72	Antagonist
2q	Н	MsO	2	(±) trans	6.7	5.7	10	
2r	Н	НО	1	(±) trans	7.9	6.5	27	
2s	H	MsO	1	(±) trans	7.3	6.0	22	

^a All new compounds gave satisfactory analytical/spectral data. ¹³ ^b Affinities are pKi values. All values represent the mean of at least 2 experiments, each within 0.2 of the mean. ^c Microphysiometer. ¹² ^d Selected compounds were evaluated.

Alongside these binding and functional studies, the rate of clearance from the rat following *iv* administration was measured for a representative group of compounds (Table 2). These data, when compared with those obtained from our original lead (compound 1a) in the aminotetralin series, indicate that the tricyclic derivatives are indeed cleared more slowly than their N-propyl predecessors, vindicating our original conjecture.

Table 2. Clearance data

Compound No.	Clearance (ml/min/kg)
2a	46
2 c	61
21	59
1a	96

In conclusion, we have identified two related novel series of tricyclic derivatives $\mathbf{2}$, which not only show high potency and selectivity for the dopamine D_3 receptor over the D_2 receptor, but also show the promise of considerable improvement in their *in vivo* stabilities when compared with the parent aminotetralins. These improved *in vivo* characteristics should facilitate their use as tools for the evaluation of the role of D_3 receptors in schizophrenia.

References and Notes

- 1. Seeman, P. Synapse 1987, 1, 133-152.
- 2. Grandy, D. K.; Marchionni, M. A.; Makam, H.; Stofko, R. E.; Alfano, M.; Frothingham, L.; Fischer, J. B.; Burke-Howie, K. J.; Server, A. C.; Civelli, O. *Proc. Nat. Acad. Sci.* 1989, 86, 9762-9766.
- 3. Sokoloff, P.; Giros, B.; Martres, M-P.; Bouthenet, M-L.; Schwartz, J-C. Nature 1990, 347, 146-151.
- Van Tol, H. H. M.; Bunzow, J. R.; Guan, H-C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Nature 1991, 350, 610-614.
- 5. Boyfield, I.; Coldwell, M. C.; Hadley, M. S.; Johnson, C. N.; Riley, G. J.; Scott, E. E.; Stacey, R.; Stemp, G.; Thewlis, K. M. *BioMed. Chem. Letts.* **1997**, *7*, 1995-1998.

- See Cannon, J. G.; Hatheway, G. J.; Long, J. P.; Sharabi, F. M. J. Med. Chem. 1976, 987-993. Also Wikstrom, H.; Sanchez, D.; Lindberg, P.; Arvidsson, L.-E.; Hacksell, U.; Johansson, A.; Nilsson, J. L. G.; Hjorth, S.; Carlsson, A. J. Med. Chem. 1982, 925-931.
- 7. Stemp G.; Johnson, C. N.; Smith, S. A.; Jeffrey, P.M. WO9747602 (1/1/98).
- (a) Li, Z.; Conser, K. R.; Jacobsen, E. N.; J. Am. Chem. Soc. 1993, 115, 5326.
 (b) Evans, D. A.; Faul, M. F.; Bilodeau, M. T. J. Org. Chem. 1991, 56, 6744-6746.
- 9. A full description of the route development towards these enantiomerically pure derivatives will be published elsewhere. When prepared by the asymmetric process, aziridines 5 show an enantiomeric purity of 83-86% by chiral HPLC. A single crystallisation of the allyl adducts 6 increased this to ≥ 99.0% ee.
- Lin, C.-H.; Haadsma-Svensson, S. R.; Phillips, G.; McCall, R. B.; Piercy, M. F.; Smith, M. W.; Svensson,
 K.; Carlsson, A.; Chidester, C. G.; Von Voigtlander, P. F. J. Med. Chem. 1993, 2208-2218.
- 11. Sokoloff, P.; Andrieux, M.; Besancon, R.; Pilon, C.; Martres, M-P.; Giros, B.; Schwartz, J-C. Eur. J. Pharmacol. Mol. Pharmacol. Section. 1992, 225, 331-337.
- For details of the microphysiometer method see Boyfield, I.; Brown, T.H.; Coldwell, M. C.; Cooper, D. C.; Hadley, M. S.; Hagan, J. J.; Healy, M. A.; Johns, A. J.; King, R. J.; Middlemiss, D. N.; Nash, D. J.; Riley, G. J.; Scott, E. E.; Smith, S. A.; Stemp, G. J. Med. Chem. 1996, 39, 1946-1948.
- 13. 1 H NMR spectra were recorded at 250 MHz in CDCl₃ as solvent. Compound **2g**, 1 H: δ 1.25 (1H,m), 1.55 (1H,m), 1.56-1.89 (6H,m), 2.06-2.37 (3H,m), 2.38-2.67 (3H,m), 2.69-3.13 (4H, m), 3.17 (3H,s), 3.52 (2H,m), 6.60 (1H,m), 7.09-7.27 (3H,m), 7.44 (3H,m), 7.62 (4H,m), 7.85 (2H, d, J = 9 Hz). Mass spectrum (API⁺):Found 533 (MH⁺). $C_{31}H_{36}N_2O_4S$ requires 532. Compound **2g** was assigned the (S,S) configuration following x-ray analysis of the allyl precursor **6**.
- 14. Boyfield, I.; Coldwell, M. C.; Johnson, C. N.; Stemp, G. unpublished results.
- 15. Malmberg, A.; Nordvall, G.; Johansson, A.M.; Mohell, N.; Hacksell, U. Mol. Pharmacol. 1994, 46, 299-312.
- 16. The relative blood clearance values were determined for each compound under steady-state conditions. Each compound was dissolved in 5% (w/v) glucose aq containing 2% (v/v) DMSO and 10% EncapsinTM HPB at a target concentration of 0.2 mg free base/ml and administered as a constant rate intravenous infusion to rats (n = 3 per compound) over 12 h at a target dose rate of 1 mg free base/kg/h. Serial blood samples were obtained during the latter part (2 h) of the infusion period to confirm steady-state blood concentrations. At the end of the infusion, the animals were killed and exsanguinated. Parent compound concentrations in blood were determined using appropriate LC/MS/MS methodologies. Blood clearance (CLb) was calculated according to the relationship; CLb = R/Css where R = the infusion rate and Css = the steady-state blood concentrations.